题目内容
【题目】在平面直角坐标系xOy中,中心在原点的椭圆C的上焦点为,离心率等于.
求椭圆C的方程;
设过且不垂直于坐标轴的动直线l交椭圆C于A、B两点,问:线段OF上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?作出判断并证明.
【答案】(1)(2)存在满足条件的点
【解析】
(1)根据题意可得,,即可求出椭圆方程;(2)设满足条件的点,则,设的方程为:,(),代入椭圆方程,根据菱形的对角线互相垂直即,结合韦达定理和向量的运算即可求出.
解:(1)由题意可知椭圆的离心率,,
所以,,进而椭圆的方程为
(2)存在满足条件的点.
设满足条件的点,则(),
设的方程为:,(),代入椭圆方程,,
设,,则,∴.
∵以、为邻边的平行四边形为菱形,∴
∵
∴,且的方向向量为
∴ 即
∵,∴,
∴,∴存在满足条件的点.
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.
非一线城市 | 一线城市 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
由算得,,
参照附表,得到的正确结论是
A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C. 有99%以上的把握认为“生育意愿与城市级别有关”
D. 有99%以上的把握认为“生育意愿与城市级别无关”
【题目】已知某海滨浴场海浪的高度(米是时刻,单位:时)的函数,记作:,下表是某日各时刻的浪高数据:
时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
经长期观测,的曲线可近似地看成是函数,,的图象.
(
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的至之间,那个时间段不对冲浪爱好者开放?