题目内容
【题目】已知从2开始的连续偶数蛇形排列形成宝塔形数表,第一行为2,第一行为46,第三行为12,10,8,第四行为14,16,18,20.如图所示,在宝塔形数表中位于第i行,第j列的数记为,比如,,,,若,则( )
A.65B.70C.71D.72
【答案】C
【解析】
由题意正偶数为等差数列,由图摆放找每一行所放的数,及每一行的数字总数与本数列的每一项的关系即可发现规律
解:由图可知,第一行放1个偶数,第二行放2个偶数,第3行放3个偶数…
又因为指图中摆放的第行第列,
所以先求第行的最后一个偶数,
该偶数小于2020且是最接近的,并且还能成为每一行最后一个数字的,
,
当时,,
第44行的最后一偶数是1980,又第45行的第45个偶数为1982,
利用等差数列的任意两项之间关系可知2020应出在该行的第45-19=26列,故,
所以.
故选:C.
练习册系列答案
相关题目