题目内容
已知在
中,内角
所对的边分别为
,且
成等差数列.
(1)若
,求
的取值范围;
(2)若
也成等差数列,求
的大小.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444555545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444570516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444586464.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444602528.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444695554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444711372.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444742552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444758435.png)
由
成等差数列可得:
-------2分
(1)由
得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232114449291384.png)
化简得:
,
因为
,所以
,故
. -------------5分
(2)由
得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445116662.png)
又有
得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445148638.png)
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232114451631045.png)
化为
,则
,又有
,
所以
,故
,
,所以
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444602528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232114448981010.png)
(1)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232114449141008.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232114449291384.png)
化简得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232114449601034.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444992824.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445007912.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445085836.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445101638.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445116662.png)
又有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232114451321048.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445148638.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232114451631045.png)
化为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445194887.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445226534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445116662.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445366784.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445382369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445397395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445413629.png)
(1)先确定
,然后可根据正弦定理,把a+c表示成关于角A的函数,然后再利用三角函数的诱导公式转化为
的形式求解.
(2)先根据
成等差数列,找到三者之间的等式关系,然后再利用已知角B的余弦公式再找一个关于a,b,c的等式关系,然后观察式子结构,变形化简,求解
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445444540.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211445522848.png)
(2)先根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211444742552.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目