题目内容

【题目】f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f(x)+f(x-8)≤2时,x的取值范围是(  )

A. (8,+∞) B. (8,9] C. [8,9] D. (0,8)

【答案】B

【解析】

令x=y=3,利用f(3)=1即可求得f(9)=2,由f(x)+f(x﹣8)≤2得f[x(x﹣8)]≤f(9),再由单调性得到不等式组,解之即可.

∵f(3)=1,

∴f(9)=f(3×3)=f(3)+f(3)=2;

函数f(x)是定义在(0,+∞)上的增函数,

f(xy)=f(x)+f(y),f(9)=2,

∴f(x)+f(x﹣8)≤2f[x(x﹣8)]≤f(9),

解得:8<x≤9.

原不等式的解集为:(8,9].

故选:B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网