题目内容

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且△PF1F2的面积为2

1)求椭圆的标准方程;

2)设斜率为1的直线与以原点为圆心,半径为的圆交于AB两点,与椭圆C交于CD两点,且),当取得最小值时,求直线的方程.

【答案】(1) (2).

【解析】

1)根据的面积求得的值,再利用椭圆过点,求得的值,从而求得椭圆的方程;

2)设直线的方程为,由直线和圆、椭圆都相交,求得,再利用弦长公式分别计算,从而建立的函数关系式,当取得最小值时,可求得的值,从而得到直线的方程.

解:(1)由的面积可得,即,∴.①

又椭圆过点,∴.②

由①②解得,故椭圆的标准方程为.

2)设直线的方程为,则原点到直线的距离

由弦长公式可得

代入椭圆方程,得

由判别式,解得

由直线和圆相交的条件可得,即,也即

,则

由弦长公式,得

,得

,∴,则当时,取得最小值

此时直线的方程为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网