题目内容

已知数列{an}满足an=an-1+
1
n2
a2n-1(n∈N*)

(1)若数列{an}是以常数a1首项,公差也为a1的等差数列,求a1的值;
(2)若a0=
1
2
,求证:
1
an-1
-
1
an
1
n2
对任意n∈N*都成立;
(3)若a0=
1
2
,求证:
n+1
n+2
an<n
对任意n∈N*都成立.
分析:(1)由an=an-1+
1
n2
a2n-1(n∈N*)
得:a1=
1
n2
[a1+(n-2)a1]2
,从而可求的求得a1=0;
(2)由an>an-1>0知anan-1+
1
n2
anan-1
,两边同除以anan-1,可得结论
(3)由(2)可知
1
a0
-
1
an
=(
1
a0
-
1
a1
)+(
1
a1
-
1
a2
)+…+(
1
an-1
-
1
an
)
<1+
1
22
+
1
32
+…+
1
n2
,再进行放缩
可证得结论.
解答:解:(1)由an=an-1+
1
n2
a2n-1(n∈N*)
得:a1=
1
n2
[a1+(n-2)a1]2

a1=(
n-1
n2
)2a12
,求得a1=0…5分
(2)由an>an-1>0知anan-1+
1
n2
anan-1

两边同除以anan-1,得
1
an-1
-
1
an
1
n2
…10分
(3)
1
a0
-
1
an
=(
1
a0
-
1
a1
)+(
1
a1
-
1
a2
)+…+(
1
an-1
-
1
an
)
<1+
1
22
+
1
32
+…+
1
n2
<1+
1
1×2
+
1
2×3
+…+
1
(n-1)n
=1+(
1
2
-
1
3
)+(
1
3
-
1
4
)+(
1
4
-
1
5
)+…+(
1
(n-1)
-
1
n
)
=2-
1
n
,将a0=
1
2
代入,得an<n;㈠…12分∵an-1<n-1∴an=an-1+
1
n2
a2n-1
an-1+
n-1
n2
an-1
an-1
n2
n2+n-1
an
anan-1+
1
n2
an-1
n2
n2+n-1
an
1
an-1
-
1
an
1
n2+n-1
1
n
-
1
n+1
1
a1
-
1
an
=(
1
a1
-
1
a2
)+(
1
a2
-
1
a3
)+…+(
1
an-1
-
1
an
)
>(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)
=
1
2
-
1
n+1
a1=
3
4
,∴
1
an
5
6
+
1
n+1
n+2
n+1
an
n+1
n+2

由㈠㈡知,命题成立.…14分.
点评:本题以数列为载体,考查数列递推式,考查数列与不等式的结合,考查放缩法,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网