题目内容
如图所示,在四面体中,,,两两互相垂直,且.(1)求证:平面平面;(2)求二面角的大小;(3)若直线与平面所成的角为,求线段的长度.
(1)见解析 (2)二面角的大小为. (3).
解析
(本题15分)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.(I)证明:EM⊥BF;(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
(12分)已知如图:平行四边形ABCD中,,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若,求四棱锥F-ABCD的体积.
(本题13分)在几何体ABCDE中,∠BAC= ,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1. (1)求证:DC∥平面ABE;(2)求证:AF⊥平面BCDE;(3)求几何体ABCDE的体积.
已知正方形的边长为2,.将正方形沿对角线折起,使,得到三棱锥,如图所示. (1)当时,求证:;(2)当二面角的大小为时,求二面角的正切值.
如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△,使平面⊥平面BCDE,F为线段的中点. ks5u(Ⅰ)求证:EF∥平面;(Ⅱ)求直线与平面所成角的正切值.
如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(Ⅰ)三角形的面积;(II)三棱锥的体积
已知矩形周长为20,矩形绕他的一条边旋转形成一个圆柱。问矩形的长、宽各为多少时,旋转形成的圆柱的侧面积最大?
已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.(Ⅰ)求该圆台的母线长;(Ⅱ)求该圆台的体积.