题目内容
【题目】在平面直角坐标系中,圆,点,过的直线与圆交于点,过做直线平行交于点.
(1)求点的轨迹的方程;
(2)过的直线与交于、两点,若线段的中点为,且,求四边形面积的最大值.
【答案】(1).(2)
【解析】
(1)由题意可得,可得,则的轨迹是焦点为,,长轴为的椭圆的一部分,再用待定系数法即可求出方程;
(2)由题意设直线方程为,设,,联立直线与椭圆的方程,结合韦达定理表示出,可得,设四边形的面积为,则,再根据基本不等式即可求出答案.
解:(1)因为,又因为,所以,
所以,
所以的轨迹是焦点为,,长轴为的椭圆的一部分,
设椭圆方程为,
则,,所以,,
所以椭圆方程为,
又因为点不在轴上,所以,
所以点的轨迹的方程为;
(2)因为直线斜率不为0,设为,
设,,联立整理得,
所以,,,
所以,
∵,∴,
设四边形的面积为,
则 ,
令,
再令,则在单调递增,
所以时,,
此时,取得最小值,所以.
练习册系列答案
相关题目
【题目】某地区人民法院每年要审理大量案件,去年审理的四类案件情况如表所示:
编号 | 项目 | 收案(件) | 结案(件) | |
判决(件) | ||||
1 | 刑事案件 | 2400 | 2400 | 2400 |
2 | 婚姻家庭、继承纠纷案件 | 3000 | 2900 | 1200 |
3 | 权属、侵权纠纷案件 | 4100 | 4000 | 2000 |
4 | 合同纠纷案件 | 14000 | 13000 | n |
其中结案包括:法庭调解案件、撤诉案件、判决案件等.根据以上数据,回答下列问题.
(Ⅰ)在编号为1、2、3的收案案件中随机取1件,求该件是结案案件的概率;
(Ⅱ)在编号为2的结案案件中随机取1件,求该件是判决案件的概率;
(Ⅲ)在编号为1、2、3的三类案件中,判决案件数的平均数为,方差为S12,如果表中n,表中全部(4类)案件的判决案件数的方差为S22,试判断S12与S22的大小关系,并写出你的结论(结论不要求证明).