题目内容
【题目】已知函数.
(1)若,且,求证:;
(2)若时,恒有,求的最大值.
【答案】(1)见解析;(2).
【解析】
(1)利用导数分析函数的单调性,并设,则,,将不等式等价转化为证明,构造函数,利用导数分析函数在区间上的单调性,通过推导出来证得结论;
(2)构造函数,对实数分、、,利用导数分析函数的单调性,求出函数的最小值,再通过构造新函数,利用导数求出函数的最大值,可得出的最大值.
(1),,所以,函数单调递增,
所以,当时,,此时,函数单调递减;
当时,,此时,函数单调递增.
要证,即证.
不妨设,则,,
下证,即证,
构造函数,
,所以,函数在区间上单调递增,
,,即,即,
,且函数在区间上单调递增,
所以,即,故结论成立;
(2)由恒成立,得恒成立,
令,则.
①当时,对任意的,,函数在上单调递增,
当时,,不符合题意;
②当时,;
③当时,令,得,此时,函数单调递增;
令,得,此时,函数单调递减.
.
.
令,设,则.
当时,,此时函数单调递增;
当时,,此时函数单调递减.
所以,函数在处取得最大值,即.
因此,的最大值为.
练习册系列答案
相关题目
【题目】为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:
处罚金额(单位:元) | 5 | 10 | 15 | 20 |
会闯红灯的人数 | 50 | 40 | 20 | 10 |
若用表中数据所得频率代替概率.
(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其他市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?