题目内容

【题目】某中学的十佳校园歌手有6名男同学,4名女同学,其中3名来自1班,其余7名来自其他互不相同的7个班,现从10名同学中随机选择3名参加文艺晚会,则选出的3名同学来自不同班级的概率为_____,设X为选出3名同学中女同学的人数,则该变量X的数学期望为_____

【答案】

【解析】

求出所有基本事件个数及选出的3名同学来自不同班级的基本事件个数,代入古典概率公式求出结果;又随机变量的所有可能值为0123,且,列出随机变量的分布列求出期望.

设“选出的3名同学来自不同的班级”为事件

由题意随机变量的所有可能值为0123,且

所以随机变量的分布列是:

0

1

2

3

所以随机变量的期望为.

故答案为:(1). (2).

练习册系列答案
相关题目

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中重要的一部分,其中大学生更是频频使用网络外卖服务.市教育主管部门为掌握网络外卖在该市各大学的发展情况,在某月从该市大学生中随机调查了人,并将这人在本月的网络外卖的消费金额制成如下频数分布表(已知每人每月网络外卖消费金额不超过元):

消费金额(单位:百元)

频数

由频数分布表可以认为,该市大学生网络外卖消费金额(单位:元)近似地服从正态分布,其中近似为样本平均数(每组数据取区间的中点值,.现从该市任取名大学生,记其中网络外卖消费金额恰在元至元之间的人数为,求的数学期望;

市某大学后勤部为鼓励大学生在食堂消费,特地给参与本次问卷调查的大学生每人发放价值元的饭卡,并推出一档勇闯关,送大奖的活动.规则是:在某张方格图上标有第格、第格、第格、、第格共个方格.棋子开始在第格,然后掷一枚均匀的硬币(已知硬币出现正、反面的概率都是,其中),若掷出正面,将棋子向前移动一格(从),若掷出反面,则将棋子向前移动两格(从.重复多次,若这枚棋子最终停在第格,则认为闯关成功,并赠送元充值饭卡;若这枚棋子最终停在第格,则认为闯关失败,不再获得其他奖励,活动结束.

①设棋子移到第格的概率为,求证:当时,是等比数列;

②若某大学生参与这档闯关游戏,试比较该大学生闯关成功与闯关失败的概率大小,并说明理由.

参考数据:若随机变量服从正态分布,则.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网