题目内容
某大学体育学院在2012年新招的大一学生中,随机抽取了 40名男生,他们的身高(单位:cm)情况共分成五组:第1组[175,180),第 2 组[180,185),第 3 组 [185,190),第 4 组[190,195),第 5 组[195,200) .得到的频率分布直方图(局部)如图所示,同时规定身高在185cm以上(含185cm)的学生成为组建该校篮球队的“预备生”.
(I)求第四组的频率并补布直方图;
(II)如果用分层抽样的方法从“预备生”和“非预备生”中选出5人,再从这5人中随机选2人,那么至少有1人是“预备生”的概率是多少?
(III)若该校决定在第4,5组中随机抽取2名学生接受技能测试,第5组中有ζ名学生接受测试,试求ζ的分布列和数学期望.
(I) 第四组的频率为0.2 (II)
(III) 分布列为:0 1 2
解析试题分析:(Ⅰ)其它组的频率和为(0.01+0.07+0.06+0.02)×5=0.8,所以第四组的频率为0.2 ……3分
(Ⅱ)依题意“预备生”和“非预备生”的人数比为3:2,所以采用分层抽样的方法抽取的5人中有“预备生”3人,“非预备生” 2人,记从这5人中选2人至少有1人是“预备生”为事件
=. ……6分
(Ⅲ)由频率分布直方图可知,第四组的人数为8人,第五组的人数为4人
的所有可能取值为0,1,2
,, ……9分
的分布列为:
……12分0 1 2
考点:本小题主要考查频率分布直方图,分层抽样,古典概型和离散型随机变量的分布列、期望和随机变量的概率.
点评:解决有关频率分布直方图问题时,要注意纵轴是频率/组距,而不是频率;写离散型随机变量的分布列时,要准确写出随机变量取不同值时的概率,可以利用概率和为1检验是写的分布列否正确.
有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下联表:
| 优秀 | 非优秀 | 合计 |
甲班 | 30 | | |
乙班 | | 50 | |
合计 | | | 200 |
(1)请完成上面联表;
(2)根据列联表的数据,能否有的把握认为“成绩与班级有关系”
(3)从全部200人中有放回抽取3次,每次抽取一人,记被抽取的3人中优秀的人数为,若每次抽取得结果是相互独立的,求的分布列,期望和方差
参考公式与参考数据如下:
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
(1)填充频率分布表的空格(将答案直接填在表格内);
分组 | 频数 | 频率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | | 0.16 |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | | |
合计 | 50 | |
(3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人。
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个至多一个“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
| 甲班 (A方式) | 乙班 (B方式) | 总计 |
成绩优秀 | | | |
成绩不优秀 | | | |
总计 | | | |
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
k | 1.323 | 2.072 | 2. 706 | 3. 841 | 5. 024 |