题目内容
有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下联表:
| 优秀 | 非优秀 | 合计 |
甲班 | 30 | | |
乙班 | | 50 | |
合计 | | | 200 |
(1)请完成上面联表;
(2)根据列联表的数据,能否有的把握认为“成绩与班级有关系”
(3)从全部200人中有放回抽取3次,每次抽取一人,记被抽取的3人中优秀的人数为,若每次抽取得结果是相互独立的,求的分布列,期望和方差
参考公式与参考数据如下:
(1)
(2),有的把握 优秀 非优秀 合计 甲班 30 70 100 乙班 50 50 100 合计 80 120 200
(3),,
解析试题分析:(1)根据题意,由于全部200人中随机抽取1人为优秀的概率为,那么可知优秀的人数为80,那么可知不优秀的人数为120,那么可知得到列联表为:
(2)根据a=30,b=70,c=50,d=120,结合公式,可知,有的把握认为“成绩与班级有关系” 优秀 非优秀 合计 甲班 30 70 100 乙班 50 50 100 合计 80 120 200
(3)由于全部200人中有放回抽取3次,每次抽取一人,记被抽取的3人中优秀的人数为,那么可知,,,。
考点:列联表和独立性检验
点评:主要是考查了独立性检验的思想的运用,以及二项分布的运用,属于中档题。
一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺点的零件数y(件) | 11 | 9 | 8 | 5 |
画出散点图,并通过散点图确定变量y对x是否线性相关;
(2)如果y对x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)
某中学号召本校学生在本学期参加市创办卫生城的相关活动,学校团委对该校学生是否关心创卫活动用简单抽样方法调查了位学生(关心与不关心的各一半),
结果用二维等高条形图表示,如图.
(1)完成列联表,并判断能否有℅的把握认为是否关心创卫活动与性别有关?
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
;
| 女 | 男 | 合计 |
关心 | | | 500 |
不关心 | | | 500 |
合计 | | 524 | 1000 |
(2)已知校团委有青年志愿者100名,他们已参加活动的情况记录如下:
参加活动次数 | 1 | 2 | 3 |
人数 | 10 | 50 | 40 |
(i)从志愿者中任选两名学生,求他们参加活动次数恰好相等的概率;
(ii)从志愿者中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.
为调查某地区大学生是否爱好某项体育运动,用简单随机抽样方法从该地区的大学里调查了500位大学生,结果如下:
| 男 | 女 |
爱好 | 40 | 30 |
不爱好 | 160 | 270 |
(2) 能否有99%的把握认为该地区的大学生是否爱好该项体育运动与性别有关?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(t)与相应的生产能耗y(t标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)已知该厂技术改造前100t甲产品的生产能耗为90t标准煤,试根据(2)求出的线性回归方程预测生产100t甲产品的生产能耗比技术改造前降低多少吨标准煤?
某校的研究性学习小组为了研究高中学生的身体发育状况,在该校随机抽出120名17至18周岁的男生,其中偏重的有60人,不偏重的也有60人。在偏重的60人中偏高的有40人,不偏高的有20人;在不偏重的60人中偏高和不偏高人数各占一半
(1)根据以上数据建立一个 列联表:
| 偏重 | 不偏重 | 合计 |
偏高 | | | |
不偏高 | | | |
合计 | | | |