题目内容
【题目】已知函数 的定义域为R.
(1)求实数m的范围;
(2)若m的最大值为n,当正数a,b满足 时,求4a+7b的最小值.
【答案】
(1)解:∵函数的定义域为R,|x+2|+|x﹣4|≥|(x+2)﹣(x﹣4)|=6,∴m≤6.
(2)解:由(Ⅰ)知n=6,由柯西不等式知,4a+7b= = ,当且仅当 时取等号,∴4a+7b的最小值为 .
【解析】(I)利用绝对值不等式的性质即可得出.(II)利用柯西不等式的性质即可得出.
【考点精析】关于本题考查的函数的定义域及其求法和绝对值不等式的解法,需要了解求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能得出正确答案.
练习册系列答案
相关题目