题目内容
(本题满分8分)
求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且与直线2x + y + 5 = 0平行的直线方程。
解:解得 ………3分
所以交点(-1,2)………4分
∵所求直线与直线2x + y + 5 = 0平行,∴ ………6分
∴直线方程为………8分
解析
(本题满分12分)某公司“咨询热线”电话共有10路外线,经长期统计发现,在8点至10点这段时间内,英才苑外线电话同时打入情况如下表所示:
电话同时打入数ξ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
概率P | 0.13 | 0.35 | 0.27 | 0.14 | 0.08 | 0.02 | 0.01 | 0 | 0 | 0 | 0 |
(1)若这段时间内,公司只安排了2位接线员(一个接线员一次只能接一个电话).
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这一时间内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话一次不能接通的概率表示公司形象的“损害度”,求这种情况下公司形象的“损害度”;(2)求一周五个工作日的这一时间内,同时打入的电话数ξ的期望值.
(本题满分15分)由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水), 游泳池的水深经常变化,已知泰州某浴场的水深(米)是时间,(单位小时)的函数,记作,下表是某日各时的水深数据
t(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 2 5 | 2 0 | 15 | 20 | 249 | 2 | 151 | 199 | 2 5 |
经长期观测的曲线可近似地看成函数
(Ⅰ)根据以上数据,求出函数的最小正周期T,振幅A及函数表达式;
(Ⅱ)依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8 00至晚上20 00之间,有多少时间可供游泳爱好者进行运动
(本题满分12分)汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);
|
轿车A |
轿车B |
轿车C |
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |
按类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(Ⅲ)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率