题目内容
【题目】在如图所示的几何体中,面CDEF为正方形,平面ABCD为等腰梯形,AB//CD,AB =2BC,点Q为AE的中点.
(1)求证:AC//平面DQF;
(2)若∠ABC=60°,AC⊥FB,求BC与平面DQF所成角的正弦值.
【答案】(1)见解析(2)
【解析】
(1)连接交于点,连接,通过证明,证得平面.
(2)建立空间直角坐标系,利用直线的方向向量和平面的法向量,计算出线面角的正弦值.
(1)证明:连接交于点,连接,因为四边形为正方形,所以点为的中点,又因为为的中点,所以;
平面平面,
平面.
(2)解:,设,则,在中,,由余弦定理得:,
.
又,平面..
平面.
如图建立的空间直角坐标系.
在等腰梯形中,可得.
则.
那么
设平面的法向量为,
则有,即,取,得.
设与平面所成的角为,则.
所以与平面所成角的正弦值为.
练习册系列答案
相关题目