题目内容
【题目】已知,是椭圆:的左、右焦点,恰好与抛物线的焦点重合,过椭圆的左焦点且与轴垂直的直线被椭圆截得的线段长为3.
(1)求椭圆的方程;
(2)已知点,直线:,过斜率为的直线与椭圆交于,两点,与直线交于点,若直线,,的斜率分别是,,,求证:无论取何值,总满足是和的等差中项.
【答案】(1);(2)见解析
【解析】分析:(1):由题意把代入椭圆,求得,即可得到椭圆的方程;
(2)把直线方程为:,代入椭圆方程,利用根与系数的关系,求得
,把代入直线方程,得,又因为三点共线,所以,化简整理得,即可作出证明.
详解:(1):由题意,把代入椭圆,得
,因此椭圆方程为.
(2)直线方程为:,代入椭圆方程,
并整理得,
设则有,
把代入直线方程得:, 从而.
又因为三点共线,所以
所以
,又,所以,即无论取何值,
总满足是和的等差中项.
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:
(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50 kg | 箱产量≥50 kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.
附:
P() | 0.050 0.010 0.001 |
k | 3.841 6.635 10.828 |
.
【题目】“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:
运动达人 | 参与者 | 合计 | |
男教师 | 60 | 20 | 80 |
女教师 | 40 | 20 | 60 |
合计 | 100 | 40 | 140 |
(1)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?
(2)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.
参考公式:,其中.
参考数据:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |