题目内容
16.等差数列{an}和{bn}的前n项和分别为Sn与Tn,对一切自然数n,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{5}}{{b}_{5}}$=$\frac{9}{14}$.分析 由题意和等差数列的求和公式以及性质可得$\frac{{a}_{5}}{{b}_{5}}$=$\frac{{S}_{9}}{{T}_{9}}$,代值计算可得.
解答 解:由题意和等差数列的求和公式以及性质可得:
$\frac{{a}_{5}}{{b}_{5}}$=$\frac{2{a}_{5}}{2{b}_{5}}$=$\frac{{a}_{1}+{a}_{9}}{{b}_{1}+{b}_{9}}$=$\frac{\frac{9({a}_{1}+{a}_{9})}{2}}{\frac{9({b}_{1}+{b}_{9})}{2}}$=$\frac{{S}_{9}}{{T}_{9}}$=$\frac{2×9}{3×9+1}$=$\frac{9}{14}$,
故答案为:$\frac{9}{14}$.
点评 本题考查等差数列的求和公式和等差数列的性质,属基础题.
练习册系列答案
相关题目
1.实数x,y满足:$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ y≥\frac{1}{2}(x-3)\end{array}\right.$,则z=2x+y的最小值为( )
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
8.已知实数x,y满足条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,z=x+yi(i为虚数单位),则|z-1+2i|的最小值是( )
A. | $\frac{\sqrt{2}}{2}$ | B. | 2 | C. | $\frac{1}{2}$ | D. | $\sqrt{5}$ |