题目内容
数列
满足
,则
( )
A.
B.
C.
D.
某几何体的三视图如图所示,则该几何体的表面积为( )
A. B. C. D.
若,则在的展开式中, 的幂函数不是整数的项共有( )
A. 13项 B. 14项 C. 15项 D. 16项
我国古代数学家刘徽是公元三世纪世界上最杰出的数学家,他在《九章算术圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法.所谓“割圆术”,即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率(圆周率指圆周长与该圆直径的比率).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径
,此时圆内接正六边形的周长为
,此时若将圆内接正六边形的周长等同于圆的周长,可得圆周率为3,当用正二十四边形内接于圆时,按照上述算法,可得圆周率为__________.(参考数据:
)
设
为边长为4的正方形
的边
的中点,
为正方形区域内任意一点(含边界),则
的最大值为 ( )
A. 32 B. 24 C. 20 D. 16
设,曲线在点处的切线与直线垂直.
(1)求的值;
(2)若对于任意的, 恒成立,求的取值范围;
(3)求证: .
已知函数的两个零点分别为,则__________.
已知函数,.
(Ⅰ)若在上的最大值为,求实数的值.
(Ⅱ)若对任意的,都有恒成立,求实数的取值范围.
已知,是虚数单位,若与互为共轭复数,则( )