题目内容

13.已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=12,其中O为坐标原点,求|MN|.

分析 (1)由题意可得,直线l的斜率存在,用点斜式求得直线l的方程,根据圆心到直线的距离等于半径求得k的值,可得满足条件的k的范围.
(2)由题意可得,经过点M、N、A的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解.

解答 (1)由题意可得,直线l的斜率存在,
设过点A(0,1)的直线方程:y=kx+1,即:kx-y+1=0.
由已知可得圆C的圆心C的坐标(2,3),半径R=1.
故由$\frac{|2k-3+1|}{\sqrt{{k}^{2}+1}}$<1,
故当$\frac{4-\sqrt{7}}{3}$<k<$\frac{4+\sqrt{7}}{3}$,过点A(0,1)的直线与圆C:(x-2)2+(y-3)2=1相交于M,N两点.
(2)设M(x1,y1);N(x2,y2),
由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x-2)2+(y-3)2=1,
可得 (1+k2)x2-4(k+1)x+7=0,
∴x1+x2=$\frac{4(1+k)}{1+{k}^{2}}$,x1•x2=$\frac{7}{1+{k}^{2}}$,
∴y1•y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1
=$\frac{7}{1+{k}^{2}}$•k2+k•$\frac{4(1+k)}{1+{k}^{2}}$+1=$\frac{12{k}^{2}+4k+1}{1+{k}^{2}}$,
由$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1•x2+y1•y2=$\frac{12{k}^{2}+4k+8}{1+{k}^{2}}$=12,解得 k=1,
故直线l的方程为 y=x+1,即 x-y+1=0.
圆心C在直线l上,MN长即为圆的直径.
所以|MN|=2.

点评 本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网