题目内容
【题目】在直角坐标系中,椭圆关于坐标轴对称,以坐标原点为极点,以轴的正半轴为极轴建立极坐标系, , 为椭圆上两点.
(1)求直线的直角坐标方程与椭圆的参数方程;
(2)若点在椭圆上,且点在第一象限内,求四边形面积的最大值.
【答案】(1)直角方程参数方程为(2)6.
【解析】试题分析:
(1)将点A的坐标化为直角坐标便可得到直线的倾斜角,进而可得直线的方程;然后根据待定系数法可得椭圆的直角坐标方程,再化为参数方程即可.(2)由(1)可得点M(2cosα,2sinα) ,0<α<,进而可得点M到直线OA的距离d,所以S=S△MOA+S△MOB
=6sin(α+),结合三角知识可得结果.
试题解析:
(1)由A(,)得直线OA的倾斜角为,
所以直线OA斜率为tan=-1,
故直线OA的方程为,即x+y=0.
由x=ρcosα,y=ρsinα可得点A的直角坐标为(-, ),
因为椭圆C关于坐标轴对称,且B(2,0),
所以可设椭圆C:+=1,其中t>0且t≠12,
将(-, )的坐标代入曲线C的方程,可得t=4,
故椭圆C的方程为,
所以椭圆C的参数方程为.
(2)由(1)得M(2cosα,2sinα),0<α<.
点M到直线OA的距离d=cosα+sinα.
所以S=S△MOA+S△MOB=(3cosα+sinα)+2sinα=3cosα+3sinα=6sin(α+),
故当α=时,四边形OAMB面积S取得最大值6.
【题目】已知一工厂生产了某种产品700件,该工厂对这些产品进行了安全和环保这两个性能的质量检测。工厂决定利用随机数表法从中抽取100件产品进行抽样检测,现将700件产品按001,002,…,700进行编号;
(1)如果从第8行第4列的数开始向右读,请你依次写出最先检测的3件产品的编号;
(下面摘取了随机数表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100件产品的安全性能和环保性能的质量检测结果如下表:
检测结果分为优等、合格、不合格三个等级,横向和纵向分别表示安全性能和环保性能。若在该样本中,产品环保性能是优等的概率为,求,的值。
件数 | 环保性能 | |||
优等 | 合格 | 不合格 | ||
安全性能 | 优等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | 4 |
(3)已知,,求在安全性能不合格的产品中,环保性能为优等的件数比不合格的件数少的概率。
【题目】某书店销售刚刚上市的某高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:
单价x/元 | 18 | 19 | 20 | 21 | 22 |
销量y/册 | 61 | 56 | 50 | 48 | 45 |
(1)求试销天的销量的方差和关于的回归直线方程;
附: .
(2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?