题目内容
【题目】若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,则a的最小整数值是( )
A.0B.1C.2D.3
【答案】B
【解析】
根据条件先参变分离得:,令g(x),问题转化为 ,再对求导判断其单调性,求解,从而得到a的最小整数值.
若关于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,
问题等价于a在(0,+∞)恒成立,
令g(x),则g′(x),
令h(x)x﹣lnx,(x>0),
则h′(x)0,
故h(x)在(0,+∞)递减,
又,,
所以存在,使得,即,
所以x∈(1,x0)时,g′(x)>0,g(x)递增,
x∈(x0,2)时,g′(x)<0,g(x)递减,
∴g(x)max=g(x0),
又,
所以g(x)max=g(x0),
又1<x0<2,
∴,
∴a≥1,a的最小整数值是1.
故选:B.
【题目】某人经营淡水池塘养草鱼,根据过去期的养殖档案,该池塘的养殖重量(百斤)都在百斤以上,其中不足百斤的有期,不低于百斤且不超过百斤的有期,超过百斤的有期.根据统计,该池塘的草鱼重量的增加量(百斤)与使用某种饵料的质量(百斤)之间的关系如图所示.
(1)根据数据可知与具有线性相关关系,请建立关于的回归方程;如果此人设想使用某种饵料百斤时,草鱼重量的增加量须多于百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.
(2)养鱼的池塘对水质含氧量与新鲜度要求较高,某商家为该养殖户提供收费服务,即提供不超过台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有如下关系:
鱼的重量(单位:百斤) | |||
冲水机只需运行台数 |
若某台增氧冲水机运行,则商家每期可获利千元;若某台冲水机未运行,则商家每期亏损千元.视频率为概率,商家欲使每期冲水机总利润的均值达到最大,应提供几台增氧冲水机?
附:对于一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为
【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销量(百台) | 0.6 | 0.8 | 1.2 | 1.6 | 1.8 |
(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;
(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:
有购买意愿对应的月份 | 7 | 8 | 9 | 10 | 11 | 12 |
频数 | 60 | 80 | 120 | 130 | 80 | 30 |
现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.
参考公式与数据:线性回归方程,其中,.