题目内容

15.已知数列{an}的各项均为正数,其前n项的和为Sn,且对任意的m,n∈N*,
都有(Sm+n+S12=4a2ma2n
(1)求$\frac{{a}_{2}}{{a}_{1}}$的值;
(2)求证:{an}为等比数列;
(3)已知数列{cn},{dn}满足|cn|=|dn|=an,p(p≥3)是给定的正整数,数列{cn},{dn}的前p项的和分别为Tp,Rp,且Tp=Rp,求证:对任意正整数k(1≤k≤p),ck=dk

分析 (1)由(Sm+n+S12=4a2ma2n.取m=n=1,可得$({a}_{2}+2{a}_{1})^{2}=4{a}_{2}^{2}$,利用a1,a2>0,即可得出.
(2)由(Sm+n+S12=4a2ma2n.令m=n,可得S2n+a1=2a2n,S2n+2+a1=2a2n+2.令m=n+1,可得${S}_{2n+1}+{a}_{1}=2\sqrt{{a}_{2n+2}{a}_{2n}}$,化简整理可得:a2n+1=2a2n
a2n+2=2a2n+1,利用等比数列的通项公式即可得出.
(3)由(2)可知:an=${a}_{1}•{2}^{n-1}$,由于|cn|=|dn|=an=${a}_{1}•{2}^{n-1}$,可得cp=±dp,若cp=-dp,不妨设cp>0,cp<0,则Tp≥a1>0,Rp≤-a1<0,这与Tp=Rp矛盾,可得cp=dp,于是Tp-1=Rp-1,即可证明.

解答 (1)解:由(Sm+n+S12=4a2ma2n.取m=n=1,可得$({a}_{2}+2{a}_{1})^{2}=4{a}_{2}^{2}$,
∵a1,a2>0,∴a2+2a1=2a2,化为$\frac{{a}_{2}}{{a}_{1}}$=2.
(2)证明:由(Sm+n+S12=4a2ma2n
令m=n,可得S2n+a1=2a2n,①
∴S2n+2+a1=2a2n+2.②
令m=n+1,可得${S}_{2n+1}+{a}_{1}=2\sqrt{{a}_{2n+2}{a}_{2n}}$,③
∴③-①可得:a2n+1=2$\sqrt{{a}_{2n+2}{a}_{2n}}$-2a2n=$2\sqrt{{a}_{2n}}$$(\sqrt{{a}_{2n+2}}-\sqrt{{a}_{2n}})$,④
②-③可得:a2n+2=$2\sqrt{{a}_{2n+2}}(\sqrt{{a}_{2n+2}}-\sqrt{{a}_{2n}})$,⑤
由④⑤可得:${a}_{2n+1}=\sqrt{{a}_{2n+2}{a}_{2n}}$,⑥
把⑥代入④可得:a2n+1=2a2n
把⑥代入⑤可得:a2n+2=2a2n+1
∴$\frac{{a}_{2n+2}}{{a}_{2n+1}}=\frac{{a}_{2n+1}}{{a}_{2n}}$=2,又$\frac{{a}_{2}}{{a}_{1}}$=2.∴${a}_{n}={a}_{1}•{2}^{n-1}$,n∈N*
∴{an}为等比数列,首项为a1,公比为2.
(3)证明:由(2)可知:an=${a}_{1}•{2}^{n-1}$,
∵|cn|=|dn|=an=${a}_{1}•{2}^{n-1}$,
∴cp=±dp,若cp=-dp
不妨设cp>0,cp<0,
则Tp≥${a}_{1}{2}^{p-1}$-$({a}_{1}{2}^{p-2}+{a}_{1}•{2}^{p-3}+…+{a}_{1})$=${a}_{1}•{2}^{p-1}$-${a}_{1}•({2}^{p-1}-1)$=a1>0,
Rp≤-${a}_{1}{2}^{p-1}$+$({a}_{1}{2}^{p-2}+{a}_{1}•{2}^{p-3}+…+{a}_{1})$=-${a}_{1}•{2}^{p-1}$+${a}_{1}•({2}^{p-1}-1)$=-a1<0,
这与Tp=Rp矛盾,∴cp=dp
于是Tp-1=Rp-1,可得cp-1=dp-1,于是cp-2=dp-2,…,c1=d1
∴对任意正整数k(1≤k≤p),ck=dk

点评 本题考查了递推式的应用、等差数列与等比数列的通项公式、数列的单调性,考查了反证法、推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网