题目内容
6.设{an}是等差数列,{bn}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*.(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)若数列{dn}满足${d_n}{d_{n+1}}={(\frac{1}{2})^{-8+{{log}_2}{b_{n+1}}}}$(n∈N*),且d1=16,试求{dn}的通项公式及其前n项和Sn.
分析 (Ⅰ)设{an}的公差为d,{bn}的公比为q,则依题意有q>0,利用a13b2=50,a8+b2=a3+a4+5,列出方程组,求解公差与公比,然后求解通项公式.
(Ⅱ)利用关系式推出$\frac{{{d_{n+2}}}}{d_n}=\frac{1}{2}$,得到{dn}是奇数项与偶数项分别是等比数列;求出通项公式,然后求解前n项和Sn.
解答 (本小题满分12分)
解:(Ⅰ)设{an}的公差为d,{bn}的公比为q,则依题意有q>0,
且$\left\{\begin{array}{l}(1+12d)q=50\\(1+7d)+q=(1+2d)+(1+3d)+5\end{array}\right.$,
即$\left\{\begin{array}{l}(1+12d)q=50\\ 2d+q=6\end{array}\right.$解得:$\left\{{\begin{array}{l}{d=2}\\{q=2}\end{array}}\right.$,或$\left\{{\begin{array}{l}{d=\frac{11}{12}}\\{q=\frac{25}{6}}\end{array}}\right.$,
由于{bn}是各项都为正整数的等比数列,所以$\left\{{\begin{array}{l}{d=2}\\{q=2}\end{array}}\right.$…(2分)
从而an=1+(n-1)d=2n-1,${b_n}={q^{n-1}}={2^{n-1}}$. …(4分)
(Ⅱ)∵${b_n}={2^{n-1}}$∴log2bn+1=n∴${d_n}{d_{n+1}}={(\frac{1}{2})^{-8+n}}$,${d_{n+1}}{d_{n+2}}={(\frac{1}{2})^{-7+n}}$
两式相除:$\frac{{{d_{n+2}}}}{d_n}=\frac{1}{2}$,
由d1=16,${d_1}{d_2}={(\frac{1}{2})^{-8+1}}=128$,得:d2=8∴d1,d3,d5,…是以d1=16为首项,以$\frac{1}{2}$为公比的等比数列;
d2,d4,d6,…是以d2=8为首项,以$\frac{1}{2}$为公比的等比数列 …(6分)
∴当n为偶数时,${d_n}=8×{(\frac{1}{2})^{\frac{n}{2}-1}}=16{(\frac{{\sqrt{2}}}{2})^n}$…(7分)
Sn=(d1+d3+…+dn-1)+(d2+d4+…+dn)=$\frac{{16×[1-{{(\frac{1}{2})}^{\frac{n}{2}}}]}}{{1-\frac{1}{2}}}+\frac{{8×[1-{{(\frac{1}{2})}^{\frac{n}{2}}}]}}{{1-\frac{1}{2}}}=32[1-{(\frac{1}{2})^{\frac{n}{2}}}]+16[1-{(\frac{1}{2})^{\frac{n}{2}}}]=48-48{(\frac{{\sqrt{2}}}{2})^n}$…(9分)
∴当n为奇数时,${d_n}=16×{(\frac{1}{2})^{\frac{n+1}{2}-1}}=16\sqrt{2}{(\frac{{\sqrt{2}}}{2})^n}$…(10分)
Sn=(d1+d3+…+dn)+(d2+d4+…+dn-1)
Sn=$\frac{{16×[1-{{(\frac{1}{2})}^{\frac{n+1}{2}}}]}}{{1-\frac{1}{2}}}+\frac{{8×[1-{{(\frac{1}{2})}^{\frac{n-1}{2}}}]}}{{1-\frac{1}{2}}}=32[1-{(\frac{1}{2})^{\frac{n+1}{2}}}]+16[1-{(\frac{1}{2})^{\frac{n-1}{2}}}]=48-32\sqrt{2}{(\frac{{\sqrt{2}}}{2})^n}$
∴${d_n}=\left\{{\begin{array}{l}{16{{(\frac{{\sqrt{2}}}{2})}^n}}\\{16\sqrt{2}{{(\frac{{\sqrt{2}}}{2})}^n}}\end{array}}\right.$,${S_n}=\left\{{\begin{array}{l}{48-48{{(\frac{{\sqrt{2}}}{2})}^n}}\\{48-32\sqrt{2}{{(\frac{{\sqrt{2}}}{2})}^n}}\end{array}}\right.$…(12分)
点评 本题考查等差数列与等比数列的求和,递推关系式的应用,考查数列的函数特征,考查计算能力.
A. | 2 | B. | $\sqrt{10}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
A. | $(-\frac{π}{3},0)$ | B. | $(-\frac{π}{6},0)$ | C. | $(\frac{π}{6},0)$ | D. | $(\frac{π}{4},0)$ |