题目内容
【题目】已知函数.
(1)当时,求函数在区间上的最值;
(2)若函数在上是单调函数,求实数的取值范围;
(3)若不等式在区间上恒成立,求的最小值.
【答案】(1)函数的最大值为,函数的最小值为;(2)或;(3)1.
【解析】
(1)求,判断在区间上的单调性,即求函数在区间上的最值;
(2)函数在上是单调函数,则或在上恒成立,即得实数的取值范围;
(3)求出.分,,三种情况讨论,求出不等式在区间上恒成立时,实数的取值范围,即求的最小值.
(1)当时,,,
0 | |||||
极小值 | |||||
0 | 单减 | 单增 |
显然,
则函数的最大值为,函数的最小值为;
(2)当函数在上单调递增时,
当且仅当,即恒成立,得;
当函数在上单调递减时,
当且仅当,即恒成立,得;
综上,若函数在上是单调函数,实数的取值范围为或;
(3),且,
当时,在区间上,得;
当时,在区间上,得恒成立;
当时,由,故存在,
使得成立,
同时在区间上,,在区间上单调递减,
,所以在区间上小于零.
综上,不等式在区间恒成立时,.
的最小值为1.
练习册系列答案
相关题目
【题目】我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.某市2019年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:
薪资 岗位 | ||||
数据开发 | ||||
数据分析 | ||||
数据挖掘 | ||||
数据产品 |
由表中数据可得该市各类岗位的薪资水平高低情况为( )
A.数据挖掘>数据开发>数据产品>数据分析
B.数据挖掘>数据产品>数据开发>数据分析
C.数据挖掘>数据开发>数据分析>数据产品
D.数据挖掘>数据产品>数据分析>数据开发