题目内容
已知函数y=f(x)(x∈D),方程f(x)=x的根x称为函数f(x)的不动点;若a1∈D,an+1=f(an)(n∈N*),则称{an} 为由函数f(x)导出的数列.设函数g(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_ST/1.png)
(1)求函数g(x)的不动点x1,x2;
(2)设a1=3,{an} 是由函数g(x)导出的数列,对(1)中的两个不动点x1,x2(不妨设x1<x2),数列求证
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_ST/3.png)
(3)试探究由函数h(x)导出的数列{bn},(其中b1=p)为周期数列的充要条件.
注:已知数列{bn},若存在正整数T,对一切n∈N*都有bn+T=bn,则称数列{bn} 为周期数列,T是它的一个周期.
【答案】分析:(1)直接解方程
=x,求出对应的自变量的值即可;
(2)直接把上面的结论代入并设
,求出cn+1的表达式即可证明求证
是等比数列;进而求出{an} 的通项公式,即可求
;
(3)先利用h(x)=
=x,得方程有两个不相等的实数根x1,x2;再求出{
}是等比数列,首项为
,公比为
;即可找到由函数h(x)导出的数列{bn}(其中b1=p)为周期数列的充要条件.
解答:解:(1)
=x,即x2-x-2=0,得x1=-1,x2=2,
所以函数g(x)的不动点为x1=-1,x2=2.
(2):a1=3,an+1=g(an)=
,设cn=
,
则cn+1=
=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/13.png)
=
cn,c1=
=4.
所以数列{
}是等比数列,公比为
,首项为4.
=4•
得an=
.
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/23.png)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/25.png)
=2.
(3):h(x)=
=x,即cx2+(d-a)x-b=0.
因为△=(d-a)2+4ac>0,所以该方程有两个不相等的实数根x1,x2.
b1=p,bn+1=h(bn)=
,
=
=
•
,
则{
}是等比数列,首项为
,公比为
.
因为
=
(
)n-1,所以
=
(
)n+T-1.
数列{bn}为周期数列的充要条件是(
)n-1=(
)n+T-1,即(
)T=1.
故|
|=1,但x1≠x2,从而cx2+d=-cx1-d.x1+x2=-
=-
,
故d=-a.
点评:本题主要考查数列知识和函数知识,属于难题.基础较弱的学生建议只做第一,第二问.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/0.png)
(2)直接把上面的结论代入并设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/3.png)
(3)先利用h(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/7.png)
解答:解:(1)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/8.png)
所以函数g(x)的不动点为x1=-1,x2=2.
(2):a1=3,an+1=g(an)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/10.png)
则cn+1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/16.png)
所以数列{
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/26.png)
(3):h(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/27.png)
因为△=(d-a)2+4ac>0,所以该方程有两个不相等的实数根x1,x2.
b1=p,bn+1=h(bn)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/32.png)
则{
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/33.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/34.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/35.png)
因为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/37.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/38.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/39.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/40.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/41.png)
数列{bn}为周期数列的充要条件是(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/42.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/43.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/44.png)
故|
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/45.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/46.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181607737352356/SYS201310241816077373523022_DA/47.png)
故d=-a.
点评:本题主要考查数列知识和函数知识,属于难题.基础较弱的学生建议只做第一,第二问.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目