题目内容
【题目】2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(2)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为,若每次抽取的结果是相互独立的,求的分布列,数学期望和方差.
独立性检查临界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | … | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | … |
(参考公式: ,其中)
【答案】(1)见解析;(2)见解析.
【解析】试题分析:(1)结合频率分布直方图,列出列联表,计算即可;(2)由题意知该问题为二项分布, ,从而可解决问题.
试题解析:
(1)分布直方图可知,
所以在抽取的100人中,“围棋迷”有25人,
从而列联表如下
非围棋迷 | 围棋迷 | 合计 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合计 | 75 | 25 | 100 |
因为,所以没有95%的把握认为“围棋迷”与性别有关.
(2)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从该地区抽取1名“围棋迷”的概率为.
由题意知, ,从而的分布列为
0 | 1 | 2 | 3 | |
故, .
【题目】红外线治疗仪的治疗作用是在红外线照射下,组织温度升高,毛细血管扩张,血流加快,物质代谢增强,组织细胞活力及再生能力提高,对我们身体某些疾病的治疗有着很大的贡献,某药店兼营某种红外线治疗仪,经过近个月的营销,对销售状况进行相关数据分析,发现月销售量与销售价格有关,其统计数据如下表:
每台红外线治疗仪的销售价格:元 | |||||
红外线治疗仪的月销售量:台 |
(1)根据表中数据求关于的线性回归方程;
(2)①每台红外线治疗仪的价格为元时,预测红外线治疗仪的月销售量;(四舍五入为整数)
②若该红外线治疗仪的成本为元/台,药店为使每月获得最大的纯收益,利用(1)中结论,问每台该种红外线治疗仪的销售价格应定为多少元?(四舍五入,精确到元).
参考公式:回归直线方程,,.
【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别无关”
B. 有99%以上的把握认为“爱好该项运动与性别有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”