题目内容

【题目】2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(2)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的“围棋迷”人数为,若每次抽取的结果是相互独立的,求的分布列,数学期望和方差.

独立性检查临界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式: ,其中

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)结合频率分布直方图,列出列联表,计算即可;(2)由题意知该问题为二项分布, ,从而可解决问题.

试题解析:

(1)分布直方图可知,

所以在抽取的100人中,“围棋迷”有25人,

从而列联表如下

非围棋迷

围棋迷

合计

30

15

45

45

10

55

合计

75

25

100

因为,所以没有95%的把握认为“围棋迷”与性别有关.

2)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从该地区抽取1名“围棋迷”的概率为.

由题意知, ,从而的分布列为

0

1

2

3

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网