题目内容

已知函数.
(1)a≥-2时,求F(x)=f(x)-g(x)的单调区间;
(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为,其中,求的最小值.

(1)详见解析;(2).

解析试题分析:本题主要考查函数的单调性、函数的最值、导数等基础知识,意在考查考生的运算求解能力、推理论证能能力以及分类讨论思想和等价转化思想的应用.第一问,先确定的解析式,求出函数的定义域,对求导,此题需讨论的判别式,来决定是否有根,利用求函数的增区间,求函数的减区间;第二问,先确定解析式,确定函数的定义域,先对函数求导,求出的两根,即,而利用韦达定理,得到,即得到代入到中,要求,则构造函数,求出的最小值即可,对求导,判断函数的单调性,求出函数的最小值即为所求.
试题解析:(1)由题意,其定义域为,则,2分
对于,有.
①当时,,∴的单调增区间为
②当时,的两根为
的单调增区间为
的单调减区间为.
综上:当时,的单调增区间为
时,的单调增区间为
的单调减区间为.   6分
(2)对,其定义域为.
求导得,
由题两根分别为,则有,   8分
,从而有
,  10分
.
时,,∴上单调递减,

.      12分
考点:函数的单调性、函数的最值、导数的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网