题目内容
【题目】如图,在直角梯形中,,,,为的中点,沿将折起,使得点到点位置,且,为的中点,是上的动点(与点,不重合).
(Ⅰ)证明:平面平面垂直;
(Ⅱ)是否存在点,使得二面角的余弦值?若存在,确定点位置;若不存在,说明理由.
【答案】(Ⅰ)见解析 (Ⅱ)存在,此时为的中点.
【解析】
(Ⅰ)证明平面,得到平面平面,故平面平面,平面,得到答案.
(Ⅱ)假设存在点满足题意,过作于,平面,过作于,连接,则,过作于,连接,是二面角的平面角,设,,计算得到答案.
(Ⅰ)∵,,,∴平面.
又平面,∴平面平面,
而平面,,∴平面平面,
由,知,可知平面,
又平面,∴平面平面.
(Ⅱ)假设存在点满足题意,过作于,由知,
易证平面,所以平面,
过作于,连接,则(三垂线定理),
即是二面角的平面角,
不妨设,则,
在中,设(),由得,
即,得,∴,
依题意知,即,解得,
此时为的中点.
综上知,存在点,使得二面角的余弦值,此时为的中点.
练习册系列答案
相关题目