题目内容
设等差数列{an}的前n项和为Sn,已知(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1,则下列结论正确的是( )
A.S2 011=2 011,a2 007<a5 | B.S2 011=2 011,a2 007>a5 |
C.S2 011=-2 011,a2 007≤a5 | D.S2 011=-2 011,a2 007≥a5 |
A
解析试题分析:令
,在R上单调递增且连续的函数所以函数只有唯一的零点,从而可得,同理
∵(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1两式相加整理可得,
由,可得>0,由等差数列的性质可得
考点:函数性质与等差数列及性质
点评:本题的入手点在于通过已知条件的两数列关系式构造两函数,借助于函数单调性得到数列中某些特定项的范围,再结合等差数列中的相关性质即可求解,本题难度很大
练习册系列答案
相关题目
对于R上可导的任意函数f(x),且若满足(x-1)>0,则必有( )
A.f(0)+f(2)<2f(1) | B.f(0)+f(2)³2f(1) |
C.f(0)+f(2)>2f(1) | D.f(0)+f(2)³2f(1) |
如图,是函数的导函数的图象,则下面判断正确的是
A.在区间(-2,1)上是增函数; |
B.在区间(1,2)上是减函数; |
C.有一个极大值,两个极小值; |
D.当时,取极大值,,取极小值. |
若函数,,则函数的极值点的个数是( )
A.0 | B.1 | C.2 | D.3 |
已知积分,则实数( )
A.2 | B. | C.1 | D. |
当时,有不等式 ( )
A. |
B. |
C.当时,当时 |
D.当时,当时 |
函数的定义域为,其导函数在内的图象如图所示,则函数在区间内极大值点的个数是( )
A.1 | B.2 | C.3 | D.4 |
( )
A. | B. | C. | D. |
设函数的导函数为,且,则等于( )
A. | B. | C. | D. |