题目内容

17.函数y=2cos($\frac{π}{3}$-$\frac{1}{2}$x),则该函数的最小正周期为4π,对称轴方程为x=$\frac{2π}{3}$+2kπ,k∈Z,单调递增区间是[4kπ-$\frac{4π}{3}$,4kπ+$\frac{2π}{3}$],k∈Z,.

分析 根据三角函数的性质分别进行求解即可求出函数的周期,对称轴和单调递增区间.

解答 解:y=2cos($\frac{π}{3}$-$\frac{1}{2}$x)=2cos($\frac{1}{2}$x-$\frac{π}{3}$),
则函数的周期T=$\frac{2π}{\frac{1}{2}}$=4π,
由$\frac{1}{2}$x-$\frac{π}{3}$=kπ,k∈Z,
解得x=$\frac{2π}{3}$+2kπ,k∈Z,即对称轴为x=$\frac{2π}{3}$+2kπ,k∈Z,
由2kπ-π≤$\frac{1}{2}$x-$\frac{π}{3}$≤2kπ,k∈Z,
解得4kπ-$\frac{4π}{3}$≤x≤4kπ+$\frac{2π}{3}$,k∈Z,
即函数的单调递增区间为[4kπ-$\frac{4π}{3}$,4kπ+$\frac{2π}{3}$],k∈Z,
故答案为:4π;x=$\frac{2π}{3}$+2kπ,k∈Z,[4kπ-$\frac{4π}{3}$,4kπ+$\frac{2π}{3}$],k∈Z.

点评 本题主要考查三角函数的图象和性质,要求熟练掌握三角函数的周期,对称性和单调区间的求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网