题目内容
13.两条直线相交,最多有1个交点; 三条直线相交,最多有3个交点; 四条直线相交,最多有6个交点;则五条直线相交,最多有10个交点;推广到n(n≥2,n∈N)条直线相交,最多有$\frac{n(n-1)}{2}$个交点.分析 由已知中两条相交直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点点,五条直线最多有10个交点,我们分析n值变化过程中,交点最多个数的变化趋势,找出规律后,归纳为一般性公式即可得到答案.
解答 解:令n条直线最多交点个数为m:
两条相交直线最多有1个交点,即n=2,m=1
三条直线最多有3个交点,即n=3,m=3
四条直线最多有6个交点点,即n=4,m=6
五条直线最多有10个交点,即n=5,m=10
…
则n条直线最多交点个数m=1+2+3+4+…+(n-1)=$\frac{n(n-1)}{2}$.
故答案为:10;$\frac{n(n-1)}{2}$.
点评 本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关题目
18.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为:$\stackrel{∧}{y}$=0.85x-85.71,则下列结论中不正确的是( )
A. | 3与3x2+2ax+b=0具有正的线性相关关系 | |
B. | 回归直线过样本点的中心($\overline{x}$,$\overline{y}$) | |
C. | 若该大学某女生身高为170cm,则可断定其体重必为58.79kg | |
D. | 若该大学某女生身高增加1cm,则其体重约增加0.85kg |
18.已知向量$\overrightarrow a$=(2,-3),$\overrightarrow b$=(-5,8),则($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow b$等于( )
A. | -34 | B. | 34 | C. | 55 | D. | -55 |
5.cos(-$\frac{11π}{6}$)=( )
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
3.等差数列{an}中,a1>0,Sn是前n项和且S9=S18,则当n=( )时,Sn最大.
A. | 12 | B. | 13 | C. | 12或13 | D. | 13或14 |