题目内容

【题目】已知F1是椭圆5x2+9y2=45的左焦点,P为椭圆上半部分任意一点,A(1,1)为椭圆内一点,则|PA|+|PF1|的最小值_______________

【答案】

【解析】

由椭圆5x2+9y2=45的方程化为,可得F1(﹣2,0),F2(2,0),由椭圆的定义可得:|PF1|+|PF2|=2a,可得|PA|+|PF1|=|PA|+2a﹣|PF2|=2a﹣(|PF2|﹣|PA|)≥2a﹣|AF2|.

由椭圆5x2+9y2=45的方程化为,可得F1(﹣2,0),F2(2,0),

∴|AF2|==

如图所示.

∵|PF1|+|PF2|=2a=6,

∴|PA|+|PF1|=|PA|+6﹣|PF2|=6﹣(|PF2|﹣|PA|)≥6﹣|AF2|=6.当且仅当三点P,A,F2共线时取等号.

∴|PA|+|PF1|的最小值为

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网