题目内容

【题目】如图,在四棱锥P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点,DE=EC.

(1)求证:平面ABE⊥平面BEF;
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角 ,求a的取值范围.

【答案】
(1)证明:如图,

∵AB∥CD,CD⊥AD,AD=CD=2AB=2,F为CD的中点,

∴ABFD为矩形,AB⊥BF.

∵DE=EC,∴DC⊥EF,又AB∥CD,∴AB⊥EF

∵BF∩EF=F,∴AB⊥面BEF,又AE面ABE,

∴平面ABE⊥平面BEF


(2)解:∵DE=EC,∴DC⊥EF,又PD∥EF,AB∥CD,∴AB⊥PD

又AB⊥PD,所以AB⊥面PAD,AB⊥PA.

以AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴建立空间坐标系,

则B(1,0,0),D(0,2,0),P(0,0,a),C(2,2,0),E(1,1,

平面BCD的法向量

设平面EBD的法向量为

,即 ,取y=1,得x=2,z=

所以

因为平面EBD与平面ABCD所成锐二面角

所以cosθ∈ ,即

得:

得:

所以a的取值范围是


【解析】(1)由题目给出的条件,可得四边形ABFD为矩形,说明AB⊥BF,再证明AB⊥EF,由线面垂直的判定可得AB⊥面BEF,再根据面面垂直的判定得到平面ABE⊥平面BEF;(2)以A点为坐标原点,AB、AD、AP所在直线分别为x、y、z轴建立空间坐标系,利用平面法向量所成交与二面角的关系求出二面角的余弦值,根据给出的二面角的范围得其余弦值的范围,最后求解不等式可得a的取值范围.
【考点精析】关于本题考查的平面与平面垂直的判定,需要了解一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网