题目内容

【题目】已知椭圆 的一个顶点为A(2,0),离心率为 .直线y=k(x-1)与椭圆C交于不同的两点M、N.
(1)求椭圆C的方程.
(2)当△AMN的面积为 时,求k的值.

【答案】
(1)解:由题意得 ,解得 ,所以椭圆C的方程为
(2)解:由 ,得
设点M、N的坐标分别为 ,则 , 所以



又因为点 到直线 的距离 ,所以 的面积为
得,
【解析】(1)运用离心率公式和a,b,c的关系,解得b,进而得到椭圆方程;
(2)联立直线方程和椭圆方程,消去y,运用韦达定理和配方,化简整理,解方程即可得到k.本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、三角形面积计算公式、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
【考点精析】根据题目的已知条件,利用椭圆的标准方程的相关知识可以得到问题的答案,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网