搜索
题目内容
求满足下列条件的椭圆方程长轴在
轴上,长轴长等于12,离心率等于
;椭圆经过点
;椭圆的一个焦点到长轴两端点的距离分别为10和4.
试题答案
相关练习册答案
(1)
(2)
(3)
试题分析:(1)
(2)由题意可知
,焦点在y轴上,所以方程为
(3)
点评:椭圆中常用性质:长轴
,短轴
,焦距
,离心率
,顶点
或
练习册系列答案
标准课堂练与考系列答案
培优辅导系列答案
文曲星跟踪测试卷系列答案
优加密卷系列答案
教学质量检测卷系列答案
综合练习与检测系列答案
标准课堂作业系列答案
单元检测卷系列答案
新起点百分百课课练系列答案
课时训练一二三步系列答案
相关题目
已知椭圆C:
的左、右焦点分别为F
1
、F
2
,上顶点为A,△AF
1
F
2
为正三角形,且以线段F
1
F
2
为直径的圆与直线
相切.
(Ⅰ)求椭圆C的方程和离心率e;
(Ⅱ)若点P为焦点F
1
关于直线
的对称点,动点M满足
. 问是否存在一个定点T,使得动点M到定点T的距离为定值?若存在,求出定点T的坐标及此定值;若不存在,请说明理由.
已知椭圆
:
的离心率为
,
分别为椭圆
的左、右焦点,若椭圆
的焦距为2.
⑴求椭圆
的方程;
⑵设
为椭圆上任意一点,以
为圆心,
为半径作圆
,当圆
与椭圆的右准线
有公共点时,求△
面积的最大值.
中心在坐标原点,焦点在
轴上的椭圆的离心率为
,且经过点
。若分别过椭圆的左右焦点
、
的动直线
、
相交于P点,与椭圆分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率
、
、
、
满足
.
(1)求椭圆的方程;
(2)是否存在定点M、N,使得
为定值.若存在,求出M、N点坐标;若不存在,说明理由.
椭圆
的一个焦点是
,那么
.
椭圆
的离心率为( )
A.
B.
C.
D.
已知点
是椭圆
上一点,
为椭圆的一个焦点,且
轴,
焦距,则椭圆的离心率是( )
A.
B.
-1
C.
-1
D.
-
已知椭圆
过点
,且离心率e=
.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线
与椭圆交于不同的两点
、
,且线段
的垂直平分线过定点
,求
的取值范围。
椭圆
的离心率为( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总