题目内容
【题目】在各项均为正数的等比数列{an}中,,且a4+a5=6a3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{log2an}的前n项和为Sn,求Sn的最小值.
【答案】(Ⅰ)an=2n-4(Ⅱ)-6
【解析】
(Ⅰ)各项均为正数的等比数列{an}的公比设为q,q>0,由等比数列的通项公式,解方程即可得到所求首项和公比,进而得到所求通项公式;
(Ⅱ)设bn=log2an=log22n-4=n-4,求得数列{bn}的项的正负,即可得到所求最小值.
解:(Ⅰ)各项均为正数的等比数列{an}的公比设为q,q>0,
,且a4+a5=6a3,
可得a1q=,a1q3+a1q4=6a1q2,
解得q=2,a1=,
则an=a1qn-1=2n-1=2n-4;
(Ⅱ)设bn=log2an=log22n-4=n-4,
由1≤n≤4时,bn≤0,n≥5时,bn>0,
可得Sn的最小值为S3=S4=-3-2-1=-6.
【题目】为保障食品安全,某地食品药监管部门对辖区内甲、乙两家食品企业进行检查,分别从这两家企业生产的某种同类产品中随机抽取了100件作为样本,并以样本的一项关键质量指标值为检测依据.已知该质量指标值对应的产品等级如下:
质量指标值 | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) | [40,45] |
等级 | 次品 | 二等品 | 一等品 | 二等品 | 三等品 | 次品 |
根据质量指标值的分组,统计得到了甲企业的样本频率分布直方图和乙企业的样本频数分布表(如下面表,其中a>0).
质量指标值 | 频数 |
[15,20) | 2 |
[20,25) | 18 |
[25,30) | 48 |
[30,35) | 14 |
[35,40) | 16 |
[40,45] | 2 |
合计 | 100 |
(Ⅰ)现从甲企业生产的产品中任取一件,试估计该件产品为次品的概率;
(Ⅱ)为守法经营、提高利润,乙企业开展次品生产原因调查活动.已知乙企业从样本里的次品中随机抽取了两件进行分析,求这两件次品中恰有一件指标值属于[40,45]的产品的概率;
(Ⅲ)根据图表数据,请自定标准,对甲、乙两企业食品质量的优劣情况进行比较.
【题目】在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区100名患者的相关信息,得到如下表格:
潜伏期(单位:天) | |||||||
人数 | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;
潜伏期天 | 潜伏期天 | 总计 | |
50岁以上(含50岁) | 100 | ||
50岁以下 | 55 | ||
总计 | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.