题目内容
【题目】选修4-5:不等式选讲
已知函数f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集为[﹣5,﹣1],求实数a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求实数m的取值范围.
【答案】
(1)解:∵|x+5﹣a|≤2,∴a﹣7≤x≤a﹣3,
∵f(x)﹣|x﹣a|≤2的解集为:[﹣5,﹣1],
∴ ,∴a=2
(2)解:∵f(x)=|x﹣a|+|x+5﹣a|≥5,
∵x0∈R,使得f(x0)<4m+m2成立,
∴4m+m2>f(x)min,即4m+m2>5,解得:m<﹣5,或m>1,
∴实数m的取值范围是(﹣∞,﹣5)∪(1,+∞)
【解析】(1))问题转化为|x+5﹣a|≤2,求出x的范围,得到关于a的不等式组,解出即可;(2)问题转化为4m+m2>f(x)min , 即4m+m2>5,解出即可.
练习册系列答案
相关题目