题目内容
5.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,B、F分别为其短轴的一个端点和左焦点,且|BF|=$\sqrt{2}$.(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点为A1,A2,过定点N(2,0)的直线与椭圆C交于不同的两点D1,D2,直线A1D1,A2D2交于点K,证明点K在一条定直线上.
分析 (1)由已知,$a=\sqrt{{b}^{2}+{c}^{2}}$=$|BF|=\sqrt{2}$,e=$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,结合a2=b2+c2,可得椭圆C的方程;
(2)通过联立直线D1D2与椭圆方程、利用韦达定理,得${x_1}+{x_2}=\frac{{8{k^2}}}{{2{k^2}+1}}$,${x_1}•{x_2}=\frac{{8{k^2}-2}}{{2{k^2}+1}}$,设直线A1D1、A2D2,并联立两直线方程,消去y得$\frac{{x+\sqrt{2}}}{{x-\sqrt{2}}}=\frac{{{y_2}({x_1}+\sqrt{2})}}{{{y_1}({x_2}-\sqrt{2})}}$,计算即得结论.
解答 解:(1)由已知,$a=\sqrt{{b}^{2}+{c}^{2}}$=$|BF|=\sqrt{2}$,e=$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,且a2=b2+c2,∴$a=\sqrt{2}$,b=1,
因此椭圆C的方程$\frac{x^2}{2}+{y^2}=1$;
(2)由题意,设直线D1D2:y=k(x-2),D1(x1,y1),D2(x2,y2),
联立$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=k(x-2)\end{array}\right.$,得:(2k2+1)x2-8k2x+8k2-2=0,
由韦达定理,得${x_1}+{x_2}=\frac{{8{k^2}}}{{2{k^2}+1}}$,${x_1}•{x_2}=\frac{{8{k^2}-2}}{{2{k^2}+1}}$ ①
设直线A1D1:$y=\frac{y_1}{{{x_1}+\sqrt{2}}}(x+\sqrt{2)}$,A2D2:$y=\frac{y_2}{{{x_2}-\sqrt{2}}}(x-\sqrt{2)}$,
联立两直线方程,消去y得:$\frac{{x+\sqrt{2}}}{{x-\sqrt{2}}}=\frac{{{y_2}({x_1}+\sqrt{2})}}{{{y_1}({x_2}-\sqrt{2})}}$ ②
又$\frac{{{x_1}^2}}{2}+{y_1}^2=1$,$\frac{{{x_2}^2}}{2}+{y_2}^2=1$,并不妨设D1,D2在x轴上方,
则${y_1}=\sqrt{1-\frac{x_1^2}{2}}$,${y_2}=\sqrt{1-\frac{x_2^2}{2}}$,
代入②中,并整理得:$\frac{{x+\sqrt{2}}}{{x-\sqrt{2}}}=\frac{{{y_2}({x_1}+\sqrt{2})}}{{{y_1}({x_2}-\sqrt{2})}}=-\sqrt{\frac{{(\sqrt{2}+{x_1})(\sqrt{2}+{x_2})}}{{(\sqrt{2}-{x_1})(\sqrt{2}-{x_2})}}}$=$-\sqrt{\frac{{2+\sqrt{2}({x_1}+{x_2})+{x_1}{x_2}}}{{2-\sqrt{2}({x_1}+{x_2})+{x_1}{x_2}}}}$,
将①代入上式,并化简得$\frac{{x+\sqrt{2}}}{{x-\sqrt{2}}}=-\frac{{\sqrt{2}+1}}{{\sqrt{2}-1}}$,解得x=1,
因此直线A1D1,A2D2交于点K在定直线x=1上.
点评 本题主要考查椭圆的定义和简单性质,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.
A. | 9 | B. | 7 | C. | 6 | D. | 3 |