题目内容
函数f (x)为奇函数且f (3x+1)的周期为3,f (1)=-1,则f (2006)等于( )
A.0 | B.1 | C.一1 | D.2 |
B
解:∵f(3x+1)的周期为3
∴f(3x+1)=f[3(x+3)+1]=f(3x+1+9)
即f(t+9)=f(t)
∴函数f(x)的周期为9
∴f(2006)=f(9×223-1)=f(-1),又f(x)为奇函数,f(-1)=-f(1)=1
故选:B
∴f(3x+1)=f[3(x+3)+1]=f(3x+1+9)
即f(t+9)=f(t)
∴函数f(x)的周期为9
∴f(2006)=f(9×223-1)=f(-1),又f(x)为奇函数,f(-1)=-f(1)=1
故选:B
练习册系列答案
相关题目