ÌâÄ¿ÄÚÈÝ
15£®ÒÑÖªÅ×ÎïÏßC¶¥µãΪO£¨0£¬0£©£¬½¹µãΪF£¨1£¬0£©£¬AΪCÉÏÒìÓÚ¶¥µãµÄÈÎÒâÒ»µã£¬¹ýµãAµÄÖ±Ïßl½»C ÓÚÁíÒ»µãB£¬½»xÖáµÄÕý°ëÖáÓÚµãD£¬ÇÒÓÐ|FA|=|FD|£¬ÑÓ³¤AF½»ÇúÏßCÓÚµãE£®¹ýµãE×÷Ö±Ïßl1ƽÐÐÓÚl£¬Éèl1Óë´ËÅ×ÎïÏß×¼Ïß½»ÓÚµãQ£®£¨¢ñ£©ÇóÅ×ÎïÏßµÄCµÄ·½³Ì£»
£¨¢ò£©ÉèµãA¡¢B¡¢EµÄ×Ý×ø±ê·Ö±ðΪyA¡¢yB¡¢yE£¬Çó$\frac{{{y_A}-{y_B}}}{{{y_A}-{y_E}}}$µÄÖµ£»
£¨¢ó£©Çó¡÷AEQÃæ»ýµÄ×îСֵ£®
·ÖÎö £¨¢ñ£©ÓÉÅ×ÎïÏßC¶¥µãΪO£¨0£¬0£©£¬½¹µãΪF£¨1£¬0£©£¬¿ÉµÃÅ×ÎïÏß¿ª¿ÚÏòÓÒ£¬¼´¿ÉµÃµ½Å×ÎïÏß·½³Ì£»
£¨¢ò£©Ê×ÏÈͨ¹ý$A£¨\frac{t^2}{4}£¬t£©$£¬µÃµ½DµÄ×ø±ê£¬´Ó¶øµÃµ½Ö±ÏßADµÄ·½³Ì£¬Çó³öyB£¬Í¨¹ýÖ±ÏßAEµÄ·½³ÌÇóµÃyE£¬½«×ø±ê´úÈëÇó$\frac{{{y_A}-{y_B}}}{{{y_A}-{y_E}}}$ÇóÖµ£»
£¨¢ó£©Çó¡÷AEQÃæ»ýµÄ×îÖµ£¬Ê×ÏÈÇó³öÃæ»ýµÄ±í´ïʽS¡÷AQE=$\frac{1}{2}$|QG|•|yA-yE|£¬½ø¶ø»¯¼òÀûÓþùÖµ²»µÈʽÇó×îСֵ£®
½â´ð ½â£º£¨¢ñ£©ÓÉÅ×ÎïÏßC¶¥µãΪO£¨0£¬0£©£¬½¹µãΪF£¨1£¬0£©£¬
¼´ÓÐÅ×ÎïÏߵķ½³ÌΪy2=4x£»
£¨¢ò£©Éè$A£¨\frac{t^2}{4}£¬t£©$£¬$|{AF}|=\frac{t^2}{4}+1$£¬
¡ß|AF|=|DF|¡à${x_D}-1=\frac{t^2}{4}+1$£¬
¡à$D£¨\frac{t^2}{4}+2£¬0£©$£¬
¡àÖ±ÏßADµÄ·½³ÌΪ$y=-\frac{t}{2}£¨x-\frac{t^2}{4}-2£©$£¬
Ö±ÏßAEµÄ·½³ÌΪ$y=\frac{4t}{{{t^2}-4}}£¨x-1£©$£¬
ÓÉ$\left\{{\begin{array}{l}{y=\frac{4t}{{{t^2}-4}}£¨x-1£©}\\{{y^2}=4x}\end{array}}\right.$£¬¿ÉµÃ${y^2}-\frac{{{t^2}-4}}{t}y-4=0$
¡ßyA=t£¬¡à${y_E}=\frac{-4}{t}$£¬
ÓÉ$\left\{{\begin{array}{l}{y=-\frac{t}{2}£¨x-\frac{t^2}{4}-2£©}\\{{y^2}=4x}\end{array}}\right.$£¬¿ÉµÃ${y^2}+\frac{8}{t}y-{t^2}-8=0$
¡ßyA=t¡à${y_B}=-t-\frac{8}{t}$
¡à$\frac{{{y_B}-{y_A}}}{{{y_E}-{y_A}}}=\frac{{-2t-\frac{8}{t}}}{{-t-\frac{4}{t}}}=2$£»
£¨¢ó£©Ö±Ïßl1·½³ÌΪy=-$\frac{t}{2}$x-$\frac{2}{t}$£¬
Áîx=-1£¬¿ÉµÃQ£¨-1£¬$\frac{t}{2}$-$\frac{2}{t}$£©£¬yE=$\frac{{y}_{A}+{y}_{B}}{2}$£¬È¡ABµÄÖеãG£¬
QG¡ÎxÖᣬÔòS¡÷AQE=$\frac{1}{2}$|QG|•|yA-yE|£¬
|QG|=$\frac{1}{2}$£¨$\frac{{t}^{2}}{4}$+$\frac{4}{{t}^{2}}$+2£©=$\frac{1}{2}$£¨$\frac{2}{t}$+$\frac{t}{2}$£©2£¬¼´ÓÐS¡÷AQE=$\frac{1}{16}$£¨t+$\frac{4}{t}$£©3¡Ý$\frac{1}{16}$•£¨2$\sqrt{t•\frac{4}{t}}$£©3=4£¬
ÔòS¡÷AQEµÄ×îСֵΪ4£¬µ±ÇÒ½öµ±t=¡À2È¡µÈºÅ£®
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߵķ½³ÌºÍÐÔÖʵÄÔËÓ㬿¼²éÖ±Ïß·½³ÌµÄÇ󷨺ÍÔËÓã¬ÒÔ¼°»¯¼òÕûÀíÄÜÁ¦£¬»ù±¾²»µÈʽµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
A£® | 2014 | B£® | 2015 | C£® | 2016 | D£® | 2017 |