题目内容
【题目】在直角坐标系中, 椭圆的中心在坐标原点,其右焦点为,且点 在椭圆上.
(1)求椭圆的方程;
(2)设椭圆的左、右顶点分别为,是椭圆上异于的任意一点,直线交椭圆于另一点,直线交直线于点, 求证:三点在同一条直线上
【答案】(1)(2)见解析
【解析】
(1)(法一)由题意,求得椭圆的焦点坐标,利用椭圆的定义,求得,进而求得的值,即可得到椭圆的标准方程;
(法二)设椭圆的方程为(),列出方程组,求得的值,得到椭圆的标准方程。
(2)设,,直线的方程为,联立方程组,利用根与系数的关系和向量的运算,即可证得三点共线。
(1)(法一)设椭圆的方程为,
∵一个焦点坐标为,∴另一个焦点坐标为,
∴由椭圆定义可知,
∴,∴,∴椭圆的方程为.
(法二)不妨设椭圆的方程为(),
∵一个焦点坐标为,∴,①
又∵点在椭圆上,∴,②
联立方程①,②,解得,,
∴椭圆的方程为.
(2)设,,直线的方程为,
由方程组消去,并整理得:,
∵,∴,,
∵直线的方程可表示为,
将此方程与直线联立,可求得点的坐标为,
∴,
∵
,所以,
又向量和有公共点,故,,三点在同一条直线上.
练习册系列答案
相关题目