题目内容
【题目】已知的三个顶点,其外接圆为圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)对于线段(包括端点)上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求圆的半径的取值范围.
【答案】(1)(2)或(3)
【解析】
试题(1)借助题设条件直接求解;(2)借助题设待定直线的斜率,再运用直线的点斜式方程求解;(3)借助题设建立关于的不等式,运用分析推证的方法进行求解.
试题解析:
(1)的面积为2;
(2)线段的垂直平分线方程为,线段的垂直平分线方程为,
所以外接圆圆心,半径,圆的方程为,
设圆心到直线的距离为,因为直线被圆截得的弦长为2,所以.
当直线垂直于轴时,显然符合题意,即为所求;
当直线不垂直于轴时,设直线方程为,则,解得,
综上,直线的方程为或.
(3)直线的方程为,设,,
因为点是线段的中点,所以,又,都在半径为的圆上,
所以即
因为该关于,的方程组有解,即以为圆心,为半径的圆与以为圆心,为半径的圆有公共点,所以,
又,所以对成立.
而在上的值域为,所以且.
又线段与圆无公共点,所以对成立,即.
故圆的半径的取值范围为.
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |