题目内容
数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2,(1)求常数p的值;
(2)证明:数列{an}是等差数列.
分析:(1)由题设条件知若p=1时,a1=a2,与已知矛盾,故p≠1.则a1=0.n=2时,(2p-1)a2=0.所以p=
.
(2)由题设条件知
=
.则
=
,
=
.由此可知{an}是以a2为公差,以a1为首项的等差数列.
1 |
2 |
(2)由题设条件知
an |
an-1 |
n-1 |
n-2 |
an-1 |
an-2 |
n-2 |
n-3 |
a3 |
a2 |
2 |
1 |
解答:解:(1)当n=1时,a1=pa1,若p=1时,a1+a2=2pa2=2a2,
∴a1=a2,与已知矛盾,故p≠1.则a1=0.
当n=2时,a1+a2=2pa2,∴(2p-1)a2=0.
∵a1≠a2,故p=
.
(2)由已知Sn=
nan,a1=0.
n≥2时,an=Sn-Sn-1=
nan-
(n-1)an-1.
∴
=
.则
=
,
=
.
∴
=n-1.∴an=(n-1)a2,an-an-1=a2.
故{an}是以a2为公差,以a1为首项的等差数列.
∴a1=a2,与已知矛盾,故p≠1.则a1=0.
当n=2时,a1+a2=2pa2,∴(2p-1)a2=0.
∵a1≠a2,故p=
1 |
2 |
(2)由已知Sn=
1 |
2 |
n≥2时,an=Sn-Sn-1=
1 |
2 |
1 |
2 |
∴
an |
an-1 |
n-1 |
n-2 |
an-1 |
an-2 |
n-2 |
n-3 |
a3 |
a2 |
2 |
1 |
∴
an |
a2 |
故{an}是以a2为公差,以a1为首项的等差数列.
点评:本题为“Sn?an”的问题,体现了运动变化的思想.
练习册系列答案
相关题目