题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的方程为,定点,点是曲线上的动点, 为的中点.
(1)求点的轨迹的直角坐标方程;
(2)已知直线与轴的交点为,与曲线的交点为,若的中点为,求的长.
【答案】(1) (2)
【解析】试题分析:(1)求出曲线C1的直角坐标方程为,设点N(x′,y′),Q(x,y),由中点坐标公式得,由此能求出点Q的轨迹C2的直角坐标方程.(2)的坐标为,设的参数方程为,( 为参数)代入曲线的直角坐标方程得,根据韦达定理,利用t的参数意义得
即可得解.
试题解析:
(1)由题意知,曲线的直角坐标方程为.
设点, ,由中点坐标公式得,
代入中,得点的轨迹的直角坐标方程为.
(2)的坐标为,设的参数方程为,( 为参数)代入曲线的直角坐标方程得: ,
设点对应的参数分别为,
则, , .
练习册系列答案
相关题目
【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了止损,某地一水果店老板利用抖音直播卖货,经过一段时间对一种水果的销售情况进行统计,得到天的数据如下:
销售单价(元/) | |||||
销售量() |
(1)建立关于的回归直线方程;
(2)该水果店开展促销活动,当该水果销售单价为元/时,其销售量达到,若由回归直线方程得到的预测数据与此次促销活动的实际数据之差的绝对值不超过,则认为所得到的回归直线方程是理想的,试问:(1)中得到的回归直线方程是否理想?
(3)根据(1)的结果,若该水果成本是元/,销售单价为何值时(销售单价不超过元/),该水果店利润的预计值最大?
参考公式:回归直线方程,其中,.
参考数据:,.