题目内容
【题目】在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为.
(1)写出直线和曲线的直角坐标方程;
(2)过动点且平行于的直线交曲线于两点,若,求动点到直线的最近距离.
【答案】(1)直线:;曲线:;(2).
【解析】
(1)运用极坐标和直角坐标的关系,以及两角差的正弦公式,化简可得所求直角坐标方程;
(2)设出过且平行于的直线的参数方程,代入抛物线方程,化简整理,运用韦达定理和参数的几何意义,运用点到直线的距离公式和二次函数的最值求法,可得所求最值.
(1)直线的极坐标方程为,即为,
即,可得,即;
曲线的极坐标方程为,即为,
可得;
(2)设过点且平行于的直线的参数方程设为(为参数),
代入抛物线方程,可得,
设对应的参数分别为,可得,
又,即有,
由,可得,即,
到直线的距离:
,
当,时,动点到直线的最近距离为.
练习册系列答案
相关题目
【题目】2020年1月22日,国新办发布消息:新型冠状病毒来源于武汉一家海鲜市场非法销售的野生动.专家通过全基因组比对发现此病毒与2003年的非典冠状病毒以及此后的中东呼吸综合征冠状病毒,分别达到70%和40%的序列相似性.这种新型冠状病毒对人们的健康生命带来了严重威胁因此,某生物疫苗研究所加紧对新型冠状病毒疫苗进行实验,并将某一型号疫苗用在动物小白鼠身上进行科研和临床实验,得到统计数据如下:
未感染病毒 | 感染病毒 | 总计 | |
未注射疫苗 | 20 | ||
注射疫苗 | 30 | ||
总计 | 50 | 50 | 100 |
现从所有试验小白鼠中任取一只,取到“注射疫苗”小白鼠的概率为.
(1)求列联表中的数据,,,的值;
(2)能否有99.9%把握认为注射此种疫苗对预防新型冠状病毒有效?
附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |