题目内容

【题目】如图,在三棱柱中,平面ABC,,E是BC的中点,

求异面直线AE与所成的角的大小;

若G为中点,求二面角的余弦值.

【答案】(1);(2)

【解析】

1)以分别为轴建立空间直角坐标系,利用向量的夹角公式,求得夹角的余弦值,然后求得夹角的大小.2)通过计算平面和平面的法向量,利用空间向量夹角公式,计算得二面角的余弦值.

解:在三棱柱中,平面ABC

EBC的中点,

A为原点,ABx轴,ACy轴,z轴,建立空间直角坐标系,

00210

12

设异面直线AE所成的角为

异面直线AE所成的角为

22

设平面AGE的法向量y

,取,得

平面ACG的法向量0

设二面角的平面角为

二面角的余弦值为

练习册系列答案
相关题目

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

【答案】I)抛物线C的方程为,其准线方程为II)符合题意的直线l 存在,其方程为2x+y-1 =0.

【解析】

试题()求抛物线标准方程,一般利用待定系数法,只需一个独立条件确定p的值:(-222p·1,所以p2.再由抛物线方程确定其准线方程:,()由题意设,先由直线OA的距离等于根据两条平行线距离公式得:解得,再根据直线与抛物线C有公共点确定

试题解析:解 (1)将(1,-2)代入y22px,得(-222p·1

所以p2

故所求的抛物线C的方程为

其准线方程为

2)假设存在符合题意的直线

其方程为

因为直线与抛物线C有公共点,

所以Δ48t≥0,解得

另一方面,由直线OA的距离

可得,解得

因为-1[,+),1∈[,+),

所以符合题意的直线存在,其方程为

考点:抛物线方程,直线与抛物线位置关系

【名师点睛】求抛物线的标准方程的方法及流程

1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.

2)流程:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.

提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mxx2=mym≠0).

型】解答
束】
22

【题目】已知椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上.

(1)求椭圆的方程;

(2)直线过椭圆左焦点交椭圆于为椭圆短轴的上顶点,当直线时,求的面积.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网