题目内容
13.定义在(0,$\frac{π}{2}$)上的函数f(x),f′(x),是它的导函数,且恒有sinx•f′(x)>cosx•f(x)成立,则( )A. | $\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$) | B. | $\sqrt{3}$f($\frac{π}{6}$)>f($\frac{π}{3}$) | C. | $\sqrt{6}$f($\frac{π}{6}$)>2f($\frac{π}{4}$) | D. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) |
分析 构造函数g(x)=$\frac{f(x)}{sinx}$,求出g(x)的导数,得到函数g(x)的单调性,从而判断出函数值的大小即可.
解答 解:由f′(x)sinx>f(x)cosx,
则f′(x)sinx-f(x)cosx>0,
构造函数g(x)=$\frac{f(x)}{sinx}$,
则g′(x)=$\frac{f′(x)sinx-f(x)cosx}{s{in}^{2}x}$,
当x∈(0,$\frac{π}{2}$)时,g′(x)>0,
即函数g(x)在(0,$\frac{π}{2}$)上单调递增,
∴g($\frac{π}{6}$)<g($\frac{π}{3}$),
∴$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$),
故选:D.
点评 本题考查了导数的应用,考查函数的单调性问题,构造函数g(x)=$\frac{f(x)}{sinx}$是解题的关键,本题是一道中档题.
练习册系列答案
相关题目
4.“a≥-3”是“f(x)=-|x+a|在[3,+∞)上为减函数”的什么条件( )
A. | 充分不必要 | B. | 必要不充分 | C. | 充要 | D. | 不充分不必要 |