题目内容

14.如图所示,四边形ABCD为正方形,SA垂直于四边形ABCD所在的平面,过点A分别作AE⊥SB,AF⊥SD,垂足分别为点E和点F,求证:EF⊥SC.

分析 证明SC⊥平面AEF,即可得到EF⊥SC.

解答 证明:∵SA⊥平面ABCD,
∴SA⊥BC.
∵AB⊥BC,且SA∩AB=A,
∴BC⊥平面SAB,
∴BC⊥AE,
又∵AE⊥SB,且SB∩BC=B,
∴AE⊥平面SBC,
∴AE⊥SC,
同理AF⊥SC,
∵AE∩EF=E,
∴SC⊥平面AEF,EF?平面AEF,
∴EF⊥SC.

点评 本题重点考查了空间中直线与直线垂直、直线与平面垂直、平面与平面垂直的判定和性质等知识,属于基本知识的考查,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网