ÌâÄ¿ÄÚÈÝ

7£®ÒÑÖªº¯Êýy=x+$\frac{a}{x}$ÓÐÈçÏÂÐÔÖÊ£¬Èç¹û³£Êýa£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ£¨0£¬$\sqrt{a}$£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨$\sqrt{a}$£¬+¡Þ£©ÉϵÄÔöº¯Êý£®
£¨1£©ÊÔ½áºÏº¯ÊýµÄÐÔÖÊÖ±½Ó»­³öº¯Êýy=x+$\frac{1}{x}$ͼÏóµÄ¼òͼ£¨²»±ØÁбíÃèµã£©£»
£¨2£©Èç¹ûº¯Êýy=x+$\frac{{2}^{b}}{x}$£¨x£¾0£©ÔÚ£¨0£¬4]ÉÏÊǼõº¯Êý£¬ÔÚ[4£¬+¡Þ£©ÊÇÔöº¯Êý£¬ÇóbµÄÖµ£»
£¨3£©Éè³£Êýc¡Ê£¨1£¬4£©£¬Çóº¯Êýf£¨x£©=x+$\frac{c}{x}$£¨1¡Üx¡Ü2£©µÄ×î´óÖµºÍ×îСֵ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃy=x+$\frac{1}{x}$µÄµ¥µ÷ÐÔºÍÌØÊâµã£¬¿É×÷¼òͼ£»
£¨2£©ÓÉÌâÒâ¿ÉµÃ2b=16£¬½â·½³Ì¿ÉµÃ£»
£¨3£©Óɵ¥µ÷ÐÔÒ×µÃ×îСֵ£¬Çó³öf£¨1£©ºÍf£¨2£©×÷²î£¬·ÖÀàÌÖÂۿɵã®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃy=x+$\frac{1}{x}$ÔÚ£¨0£¬1£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨1£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
ÓÖº¯Êýy=x+$\frac{1}{x}$ΪÆ溯Êý£¬¹ÊÔÚ£¨-1£¬0£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨-¡Þ£¬-1£©ÉÏÊÇÔöº¯Êý£¬
ÇÒµ±x=1ʱy=2£¬µ±x=-1ʱ£¬y=-2£¬¿É×÷¼òͼÈçÏ£º

£¨2£©ÓÉÌâÒâ¿ÉµÃ2b=16£¬½âµÃb=4£»
£¨3£©ÓÉÌâÒâ¿ÉµÃf£¨x£©=x+$\frac{c}{x}$ÔÚ£¨0£¬$\sqrt{c}$£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨$\sqrt{c}$£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¡ßc¡Ê£¨1£¬4£©£¬¡à$\sqrt{c}$¡Ê£¨1£¬2£©£¬¡àº¯ÊýÔÚ£¨1£¬$\sqrt{c}$£©ÉÏÊǼõº¯Êý£¬ÔÚ£¨$\sqrt{c}$£¬2£©ÉÏÊÇÔöº¯Êý£¬
¡àµ±x=$\sqrt{c}$ʱ£¬º¯ÊýÈ¡×îСֵ$\sqrt{c}$+$\frac{4}{\sqrt{c}}$£¬f£¨1£©=c+1£¬f£¨2£©=2+$\frac{c}{2}$£¬
µ±c+1-£¨2+$\frac{c}{2}$£©=$\frac{c}{2}$-1£¾0¼´2£¼c£¼4ʱ£¬×î´óֵΪf£¨1£©=c+1£¬
µ±1£¼c¡Ü2ʱ£¬×î´óֵΪf£¨2£©=2+$\frac{c}{2}$£®

µãÆÀ ±¾Ì⿼²é¡°¶Ô¹´º¯Êý¡±µÄµ¥µ÷ÐÔ£¬ÊýÐνáºÏ²¢ÀûÓÃÒÑÖªÌâÄ¿µÄ½áÂÛÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø