题目内容

精英家教网如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,
且∠DAB=90°,∠ABC=45°,CB=
2
,AB=2,PA=1
(1)求证:AB∥平面PCD;
(2)求证:BC⊥平面PAC;
(3)若M是PC的中点,求三棱锥C-MAD的体积.
分析:(1)利用线面平行的判定定理证明;
(2)利用勾股定理证明BC⊥AC,由PA⊥平面ABCD,可得PA⊥BC.从而可证得BC⊥平面PAC:
(3)在直角梯形ABCD中,过C作CE⊥AB于点E,则四边形ADCE为矩形,AE=DC,AD=EC.求得CE,
计算△ACD的面积,根据M到平面ADC的距离是P到平面ADC距离的一半,求得棱锥的高,代入体积公式计算.
解答:精英家教网解:(1)∵底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,
∴AB∥CD,
又AB?平面PCD,CD?平面PCD,
∴AB∥平面PCD.           
(2)∵∠ABC=45°,CB=
2
,AB=2,
∴AC2=AB2+BC2-2AB•BC•cos45°=4+2-2×2×
2
×
2
2
=2.
则AC2+BC2=AB2,∴BC⊥AC.         
∵PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC.
又PA∩AC=A,∴BC⊥平面PAC.        
(3)在直角梯形ABCD中,过C作CE⊥AB于点E,
则四边形ADCE为矩形,∴AE=DC,AD=EC.
在Rt△CEB中,可得BE=BC•cos45°=
2
×
2
2
=1

CE=BC•sin45°=
2
×
2
2
=1
,∴AE=AB-BE=2-1=1
∴S△ADC=
1
2
DC•CE
=
1
2
×1×1
=
1
2
.,
∵M是PC的中点,∴M到平面ADC的距离是P到平面ADC距离的一半,
∴VC-MAD=VM-ACD=
1
3
×S△ACD×(
1
2
PA)=
1
3
×
1
2
×
1
2
=
1
12
点评:本题考查了线面平行的判定,线面垂直的判断,考查了三棱锥的换底性及棱锥的体积公式,涉及知识较多,对学生的推理论证能力有一定的要求.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网